Respiratory and telencephalic modulation of vocal motor neurons in the zebra finch.
نویسندگان
چکیده
Birdsong, like speech, involves coordinated vocal and respiratory activity achieved under telencephalic control. The avian vocal organ, or syrinx, is innervated by motor neurons (MNs) in the tracheosyringeal part of the hypoglossal nucleus (XIIts) that receive their synaptic input from medullary respiratory areas and telencephalic song control areas. Despite the importance of XIIts MNs to learned vocalizations, little is known about their intrinsic electrical properties or their synaptic inputs. Therefore, we made in vitro and in vivo intracellular recordings from XIIts MNs in adult male zebra finches to characterize their intrinsic properties and their synaptic modulation by respiratory and telencephalic areas. In vitro, electrical stimulation of ipsilateral or contralateral medullary respiratory areas (RAm) routinely evoked glycine receptor-mediated inhibition in XIIts. With inhibition blocked, similar stimulation evoked excitatory synaptic responses capable of driving sustained MN firing that was mediated partly by NMDA receptors. These inhibitory and excitatory inputs likely arise from RAm neurons, because chemical or electrical stimulation of RAm evoked similar responses in XIIts. In vivo, XIIts MNs displayed rhythmical, expiratory-related activity. EPSPs were pronounced at expiratory onset, but IPSPs were not apparent during inspiration, although XIIts MN firing was suppressed. However, hyperpolarizations as well as excitation were evoked by playback of the bird's own song, a stimulus that potently excites the telencephalic song nucleus that innervates XIIts. These findings illuminate functional properties of the songbird's brainstem circuitry and its specific activation by telencephalic inputs, which could coordinate vocal and respiratory activity during singing.
منابع مشابه
Physiology of neuronal subtypes in the respiratory-vocal integration nucleus retroamigualis of the male zebra finch.
Learned vocalizations, such as bird song, require intricate coordination of vocal and respiratory muscles. Although the neural basis for this coordination remains poorly understood, it likely includes direct synaptic interactions between respiratory premotor neurons and vocal motor neurons. In birds, as in mammals, the medullary nucleus retroambigualis (RAm) receives synaptic input from higher ...
متن کاملAvian nucleus retroambigualis: cell types and projections to other respiratory-vocal nuclei in the brain of the zebra finch (Taeniopygia guttata).
In songbirds song production requires the intricate coordination of vocal and respiratory muscles under the executive influence of the telencephalon, as for speech in humans. In songbirds the site of this coordination is suspected to be the nucleus retroambigualis (RAm), because it contains premotor neurons projecting upon both vocal motoneurons and spinal motoneurons innervating expiratory mus...
متن کاملInterspecies Avian Brain Chimeras Reveal That Large Brain Size Differences Are Influenced by Cell–Interdependent Processes
Like humans, birds that exhibit vocal learning have relatively delayed telencephalon maturation, resulting in a disproportionately smaller brain prenatally but enlarged telencephalon in adulthood relative to vocal non-learning birds. To determine if this size difference results from evolutionary changes in cell-autonomous or cell-interdependent developmental processes, we transplanted telenceph...
متن کاملInteraction between telencephalic signals and respiratory dynamics in songbirds.
The mechanisms by which telencephalic areas affect motor activities are largely unknown. They could either take over motor control from downstream motor circuits or interact with the intrinsic dynamics of these circuits. Both models have been proposed for telencephalic control of respiration during learned vocal behavior in birds. The interactive model postulates that simple signals from the te...
متن کاملThe HVC microcircuit: the synaptic basis for interactions between song motor and vocal plasticity pathways.
Synaptic interactions between telencephalic neurons innervating descending motor or basal ganglia pathways are essential in the learning, planning, and execution of complex movements. Synaptic interactions within the songbird telencephalic nucleus HVC are implicated in motor and auditory activity associated with learned vocalizations. HVC contains projection neurons (PNs) (HVC(RA)) that innerva...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 3 شماره
صفحات -
تاریخ انتشار 2003